Pathways to Cleaner Cooking

Stoves 101

a welcome to the sector

&

Gasifiers

Multiple potential paradigm shifts for charcoal production, urban cooking fuels and climate change mitigation&adaptation

christa-roth@foodandfuel.info Wexford, 29th May 2019

Relevance of Cooking Energy for Households

Thermal Energy for cooking and heating

= Vital for survival

(Electric) Energy for Lighting, Cooling, Communication, Entertainment

= Quality of Life

Orders of magnitude of typical energy requirements:

Heating stove 5,000-10,000 W One hot-plate for cooking 500-1,000 W Laptop Computer
LED bulb (150 lm/W)

50-100 W 0.5-1 W

People will still be cooking with solid fuels in 2050

in Africa numbers are likely to increase, while in Asia numbers are stagnating /decreasing

No change in Solid fuel users over 30 years

Source: Adapted from WHO and Bonjour et al. (2013)

Human Health-focused Pathways to Cleaner Cooking: Make the clean available and the available clean

SOLID BIOMASS

un-carbonised

USER selects cooking energy

on demand

GAS

LPG, natural Gas refined /

carbonised

ELECTRI

5

Increase access to ,clean fuels'

un-processed

un-carbonised:

LIOUID

Natural found fuel

- Biogas
- LPG
- Electricity
- Ethanol
- Natural Gas

Stove design starts with the fuel

Legend:
Renewable fuel =
Climate relevant

,cleaner' cooking

with available solid biomass fuels

- Improved combustion by better fuel preparation and appropriate stoves
- Less exposure by better ventilation

Environmental&climate focus: Renewable fuels Sustainable biomass production

Energy shelf,

User decides for ,Stacking':
 Parallel usage of multiple fuels
 and devices depending on the
 task and availability of fuel

Fuel stacking = Stove stacking

Energy from solid biomass

Graph by Dan Sweeney

- Solar energy stored by a plant through photosynthesis
- Renewable & climate neutral (with sustainable management)
- Available on demand (unlike other energy sources)
- Safe and easy to store, no disposal issues (unlike batteries)
- High calorific value (1kg=0.4kg LPG or 0.7kg ethanol, ideal source of thermal energy for any food preparation, drying, heating or productive use)

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + \text{energy} = 6 \text{ O}_2 + \text{C}_6\text{H}_1\text{O}_6 = 6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + \text{energy}$$
sunlight

biomass

LIGHT+ HEAT

Photosynthesis

By the plant transforming sunlight to create biomass

Combustion of biomass

To release the stored solar energy (photosynthesis reversed)

Products of Complete Combustion=

CO₂ H₂O HEAT LIGHT

(+ash)

Note: CO₂ is a natural ingredient of ambient air, not a risk for human health, but for climate.

Understanding fire

to optimise useful heat output & limit harmful emissions

How does biomass burn:
Stages of biomass combustion

Emissions

Smoke

CO2+H2O

CO

Light

Secondary air

Solid state fuel

Primary air

Combustion

Gasification

2: Gas Combustion (controlled by AIR)

1: Gas Generation (controlled by **HEAT**)

Where is the best spot for a cook-pot?

What is a ,Stove' = Heat-Generator

= How to make most heat from a fuel

Factors to optimise complete combustion: "the 3 T's of combustion"

Time, Temperature, Turbulence

Fuel Specific re size, shape, moisture content and state of carbonisation:

- Uncarbonised
 - •,stick'-wood, twigs
 - Briquettes
 - Woodchips, nutshells, pellets
- Charcoal lumps, carbonised briquettes

Heat-Transferstructure

= How to get most heat into the pot

Factors to optimise heat transfer: ,TARP V'

Temperature, Area, Radiation,

Proximity, Velocity

Form follows function': depending on

- Fuel
- Cultural and human factors
- •meal type, type of cooking
- pot-shape, material, size etc.

11

Design principles of stoves per fuel type

Substance:

Uncarbonised, natural

carbonised

Shape:

Log-shape pushed from side

Small size Lumps / Chunks

cannot be pushed but poured in a container

Fuel: e.g. FIREWOOD

Fuel: e.g. CHARCOAL

Design principle:
Continuous side feed
Rocket stove

Design principle:
Batch fed
Charcoal stove

Fuel: e.g. NUTSHELLS, WOODCHIPS, PELLETS etc.

For all other small-size natural and processed fuels: Gasifier: gas-creation seperated from gas-combustion

Top-lit Up-draft gasifiers: char-making gas-generator below, gas-burner on top

Gasifiers

Options for multiple paradigm shifts

- 1. Charcoal production
- 2. Urban biomass cooking fuels
- 3. Biochar for CCS (carbon capture and storage)-
 - = climate change mitigation&adaptation "Using fire to cool the Earth" (quote Bates/Draper)

Gasifier: A paradigm shift for charcoal production and urban cooking fuels

1

Heat

= mini-kiln that turns small chunky biomass into char while cooking

Gasifier: Batch-feeding of fuel, heat controlled by air regulation Conventional fires: constant feeding of fuel, unregulated air-supply Riser Concentrator

Filling level of solid fuel (below the secondary air holes)

Migrating pyrolytic front

User can decide by control of air what to do with the char

No air = Conserve char

- Earn-as-you-cook (charcoal buy-back)
- Use as biochar =
 climate-friendly
 carbon-negative cooking
 = CCS (carbon capture &
 storage)

Add air = burn char to ash

Char-conserving due to the lack of oxygen in the char-bed

- Making own charcoal under the pot while cooking
- Utilisation of all primary energy of natural resource
- Ideal for cooking habits with extended simmering phases

Switching to bottom burning up-draft mode to consume char by addition of primary air

Tchar-concep

,TChar': Combing multiple options

Gasifier produces own char on top of a charcoal stove, for immediate use in charcoal stove while still hot

Processing&densifying biomass for predictable and optimised clean combustion

"Like cooking on gas"

Ideal for clean cooking with biomass in urban areas

Supply chain management is crucial!

- Fuel supply is most time-sensitive and is needed in the appropriate quality and quantity on a regular / daily basis (unlike stoves)
- Logistical challenges of transport of input materials and product
- Power dependency and requirements for processed fuel production

For cooking user needs both at the same time

Biochar

3

example from Malawi of gasifier dimensioned to cook 50 liters of porridge with loose maize cobs

aMaizing cooking

- Replaces firewood with farm residues
- Produces biochar for nursery substrate
- Captures and sequesters carbon –

"Using FIRE to cool the Earth"

Biochar -

Natural carbon sequestration & safe storage with lots of other benefits e.g.

- Restore damaged soils and revitalize soil life
- Make crops healthier and more resilient to climate change, improve yields
- Reduce acidity and bind contaminants that potentially enter the water and food chain
 Also application in water filters for safe drinking water, etc. etc...

Biochar is an ideal tool for

- Climate change mitigation
- Climate change adaptation for improved climate resilience of agriculture and food security

Sieving: large pieces = easily igniting charcoal

Small pieces for biochar = priming with microbes and ready to go into the soil

3 major takeaways on Gasifiers

- Charcoal production can be shifted under a cooking pot to utilise all primary energy of biomass (Mitigation: avoided emission from traditional charcoal production)
- Ideal option for clean cooking on renewable gas from processed biomass (e.g. pellets) in urban areas (instead of fossil LPG)
- Biochar = soil improvement to produce more food= no-risk natural CCS (carbon capture and storage)
 - Mitigation Using fire to cool the Earth
 - Adaptation increase resilience&food security

Further reading

Micro-gasification:

cooking with gas from dry biomass

https://energypedia.info/wiki/File:2014-03_Micro_gasification_manual_GIZ_HERA_Roth.pdf https://energypedia.info/index.php/GIZ_HERA_Cooking_Energy_Compendium